Organellar crosstalk as a potential therapeutic target for rare neurodegenerative diseases (2025)

1. PrinzWA, ToulmayA, BallaT. The functional universe of membrane contact sites. Nat Rev Mol Cell Biol. 2020;21:7-24.

2. InoueT, MaekawaH, InagiR. Organelle crosstalk in the kidney. Kidney Int. 2019;95:1318-25.

3. FerreiraCR, vanKarnebeek CD. Inborn errors of metabolism. In: de Vries LS, Glass H, editors. Handbook of Clinical Neurology. Elsevier; 2019;162:pp. 449-81.

4. SaudubrayJM, Garcia-CazorlaA. An overview of inborn errors of metabolism affecting the brain: from neurodevelopment to neurodegenerative disorders. Dialogues Clin Neurosci. 2018;20:301-25.

5. RohJ, SubramanianS, WeinrebNJ, KarthaRV. Gaucher disease - more than just a rare lipid storage disease. J Mol Med. 2022;100:499-518.

6. ArévaloNB, LamaizonCM, CavieresVA, et al. Neuronopathic Gaucher disease: beyond lysosomal dysfunction. Front Mol Neurosci. 2022;15:934820.

7. StepienKM, CufflinN, DonaldA, JonesS, ChurchH, HargreavesIP. Secondary mitochondrial dysfunction as a cause of neurodegenerative dysfunction in lysosomal storage diseases and an overview of potential therapies. Int J Mol Sci. 2022;23:10573.

8. Farfel-BeckerT, VitnerEB, PresseySN, EilamR, CooperJD, FutermanAH. Spatial and temporal correlation between neuron loss and neuroinflammation in a mouse model of neuronopathic Gaucher disease. Hum Mol Genet. 2011;20:1375-86.

9. OsellameLD, DuchenMR. Defective quality control mechanisms and accumulation of damaged mitochondria link Gaucher and Parkinson diseases. Autophagy. 2013;9:1633-5.

10. dela Mata M, CotánD, Oropesa-ÁvilaM, et al. Pharmacological chaperones and coenzyme Q10 treatment improves mutant β-glucocerebrosidase activity and mitochondrial function in neuronopathic forms of gaucher disease. Sci Rep. 2015;5:10903.

11. XuYH, XuK, SunY, et al. Multiple pathogenic proteins implicated in neuronopathic Gaucher disease mice. Hum Mol Genet. 2014;23:3943-57.

12. CleeterMW, ChauKY, GluckC, et al. Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage. Neurochem Int. 2013;62:1-7.

13. GeggME, SchapiraAH. Mitochondrial dysfunction associated with glucocerebrosidase deficiency. Neurobiol Dis. 2016;90:43-50.

14. IvanovaMM, ChangsilaE, IaonouC, Goker-AlpanO. Impaired autophagic and mitochondrial functions are partially restored by ERT in Gaucher and Fabry diseases. PLoS One. 2019;14:e0210617.

15. IvanovaMM, DaoJ, KasaciN, et al. Cellular and biochemical response to chaperone versus substrate reduction therapies in neuropathic Gaucher disease. PLoS One. 2021;16:e0247211.

16. KaufmanRJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 1999;13:1211-33.

17. LiuEA, LiebermanAP. The intersection of lysosomal and endoplasmic reticulum calcium with autophagy defects in lysosomal diseases. Neurosci Lett. 2019;697:10-6.

18. HwangJ, QiL. Quality control in the endoplasmic reticulum: crosstalk between ERAD and UPR pathways. Trends Biochem Sci. 2018;43:593-605.

19. ZhangK, KaufmanRJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008;454:455-62.

20. MaorG, Rencus-LazarS, FilocamoM, StellerH, SegalD, HorowitzM. Unfolded protein response in Gaucher disease: from human to Drosophila. Orphanet J Rare Dis. 2013;8:140.

21. GörlachA, KlappaP, KietzmannT. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal. 2006;8:1391-418.

22. SharmaN, RaoSP, KalivendiSV. The deglycase activity of DJ-1 mitigates α-synuclein glycation and aggregation in dopaminergic cells: role of oxidative stress mediated downregulation of DJ-1 in Parkinson’s disease. Free Radic Biol Med. 2019;135:28-37.

23. LinKJ, LinKL, ChenSD, et al. The overcrowded crossroads: mitochondria, alpha-synuclein, and the endo-lysosomal system interaction in Parkinson’s disease. Int J Mol Sci. 2019;20:5312.

24. WongYC, KimS, PengW, KraincD. Regulation and function of mitochondria-lysosome membrane contact sites in cellular homeostasis. Trends Cell Biol. 2019;29:500-13.

25. BeltonTB, LeistenED, CisnerosJ, WongYC. Live cell microscopy of mitochondria-lysosome contact site formation and tethering dynamics. STAR Protoc. 2022;3:101262.

26. KimS, WongYC, GaoF, KraincD. Dysregulation of mitochondria-lysosome contacts by GBA1 dysfunction in dopaminergic neuronal models of Parkinson’s disease. Nat Commun. 2021;12:1807.

27. SchumannA, SchallerK, BelcheV, et al. Defective lysosomal storage in Fabry disease modifies mitochondrial structure, metabolism and turnover in renal epithelial cells. J Inherit Metab Dis. 2021;44:1039-50.

28. HuangW, ZhouR, JiangC, et al. Mitochondrial dysfunction is associated with hypertrophic cardiomyopathy in pompe disease-specific induced pluripotent stem cell-derived cardiomyocytes. Cell Prolif. 2024;57:e13573.

29. Suarez-GuerreroJL, GómezHiguera PJ, AriasFlórez JS, Contreras-GarcíaGA. [Mucopolysaccharidosis: clinical features, diagnosis and management]. Rev Chil Pediatr. 2016;87:295-304.

30. LealAF, Benincore-FlórezE, RintzE, et al. Mucopolysaccharidoses: cellular consequences of glycosaminoglycans accumulation and potential targets. Int J Mol Sci. 2022;24:477.

31. KempS, WandersR. Biochemical aspects of X-linked adrenoleukodystrophy. Brain Pathol. 2010;20:831-7.

32. TurkBR, ThedaC, FatemiA, MoserAB. X-linked adrenoleukodystrophy: pathology, pathophysiology, diagnostic testing, newborn screening and therapies. Int J Dev Neurosci. 2020;80:52-72.

33. MoserHW, MahmoodA, RaymondGV. X-linked adrenoleukodystrophy. Nat Clin Pract Neurol. 2007;3:140-51.

34. BergerJ, Forss-PetterS, EichlerFS. Pathophysiology of X-linked adrenoleukodystrophy. Biochimie. 2014;98:135-42.

35. RaymondGV, MoserAB, FatemiA. X-linked adrenoleukodystrophy. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1315/. [Last accessed on 26 Feb 2025].

36. KempS, BergerJ, AubourgP. X-linked adrenoleukodystrophy: clinical, metabolic, genetic and pathophysiological aspects. Biochim Biophys Acta. 2012;1822:1465-74.

37. WandersRJA, BaesM, RibeiroD, FerdinandusseS, WaterhamHR. The physiological functions of human peroxisomes. Physiol Rev. 2023;103:957-1024.

38. SmithJJ, AitchisonJD. Regulation of peroxisome dynamics. Curr Opin Cell Biol. 2009;21:119-26.

39. SandalioLM, Rodríguez-serranoM, Romero-puertasMC, delRío LA. Role of peroxisomes as a source of reactive oxygen species (ROS) signaling molecules. In: del Río LA, editor. Peroxisomes and their key role in cellular signaling and metabolism. Dordrecht: Springer Netherlands; 2013. pp. 231-55.

40. FransenM, NordgrenM, WangB, ApanasetsO. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta. 2012;1822:1363-73.

41. HulshagenL, KryskoO, BottelbergsA, et al. Absence of functional peroxisomes from mouse CNS causes dysmyelination and axon degeneration. J Neurosci. 2008;28:4015-27.

42. KryskoO, HulshagenL, JanssenA, et al. Neocortical and cerebellar developmental abnormalities in conditions of selective elimination of peroxisomes from brain or from liver. J Neurosci Res. 2007;85:58-72.

43. WiesingerC, KunzeM, RegelsbergerG, Forss-PetterS, BergerJ. Impaired very long-chain acyl-CoA β-oxidation in human X-linked adrenoleukodystrophy fibroblasts is a direct consequence of ABCD1 transporter dysfunction. J Biol Chem. 2013;288:19269-79.

44. FourcadeS, FerrerI, PujolA. Oxidative stress, mitochondrial and proteostasis malfunction in adrenoleukodystrophy: a paradigm for axonal degeneration. Free Radic Biol Med. 2015;88:18-29.

45. LaunayN, RuizM, FourcadeS, et al. Oxidative stress regulates the ubiquitin-proteasome system and immunoproteasome functioning in a mouse model of X-adrenoleukodystrophy. Brain. 2013;136:891-904.

46. LaunayN, AguadoC, FourcadeS, et al. Autophagy induction halts axonal degeneration in a mouse model of X-adrenoleukodystrophy. Acta Neuropathol. 2015;129:399-415.

47. KruskaN, SchönfeldP, PujolA, ReiserG. Astrocytes and mitochondria from adrenoleukodystrophy protein (ABCD1)-deficient mice reveal that the adrenoleukodystrophy-associated very long-chain fatty acids target several cellular energy-dependent functions. Biochim Biophys Acta. 2015;1852:925-36.

48. López-ErauskinJ, GalinoJ, RuizM, et al. Impaired mitochondrial oxidative phosphorylation in the peroxisomal disease X-linked adrenoleukodystrophy. Hum Mol Genet. 2013;22:3296-305.

49. MoratóL, GalinoJ, RuizM, et al. Pioglitazone halts axonal degeneration in a mouse model of X-linked adrenoleukodystrophy. Brain. 2013;136:2432-43.

50. López-ErauskinJ, GalinoJ, BianchiP, et al. Oxidative stress modulates mitochondrial failure and cyclophilin D function in X-linked adrenoleukodystrophy. Brain. 2012;135:3584-98.

51. WandersRJA, VazFM, WaterhamHR, FerdinandusseS. Fatty acid oxidation in peroxisomes: enzymology, metabolic crosstalk with other organelles and peroxisomal disorders. In: Lizard G, editor. Peroxisome biology: experimental models, peroxisomal disorders and neurological diseases. Cham: Springer International Publishing; 2020. pp. 55-70.

52. vande Beek MC, OfmanR, DijkstraI, et al. Lipid-induced endoplasmic reticulum stress in X-linked adrenoleukodystrophy. Biochim Biophys Acta Mol Basis Dis. 2017;1863:2255-65.

53. FransenM, LismontC, WaltonP. The peroxisome-mitochondria connection: how and why? Int J Mol Sci. 2017;18:1126.

54. SinghJ, KhanM, SinghI. Silencing of Abcd1 and Abcd2 genes sensitizes astrocytes for inflammation: implication for X-adrenoleukodystrophy. J Lipid Res. 2009;50:135-47.

55. SinghI, PujolA. Pathomechanisms underlying X-adrenoleukodystrophy: a three-hit hypothesis. Brain Pathol. 2010;20:838-44.

56. CourtFA, ColemanMP. Mitochondria as a central sensor for axonal degenerative stimuli. Trends Neurosci. 2012;35:364-72.

57. FourcadeS, López-ErauskinJ, RuizM, FerrerI, PujolA. Mitochondrial dysfunction and oxidative damage cooperatively fuel axonal degeneration in X-linked adrenoleukodystrophy. Biochimie. 2014;98:143-9.

58. FujikiY, YagitaY, MatsuzakiT. Peroxisome biogenesis disorders: molecular basis for impaired peroxisomal membrane assembly: in metabolic functions and biogenesis of peroxisomes in health and disease. Biochim Biophys Acta. 2012;1822:1337-42.

59. SalpietroV, PhadkeR, SaggarA, et al. Zellweger syndrome and secondary mitochondrial myopathy. Eur J Pediatr. 2015;174:557-63.

60. LieberDS, HershmanSG, SlateNG, et al. Next generation sequencing with copy number variant detection expands the phenotypic spectrum of HSD17B4-deficiency. BMC Med Genet. 2014;15:30.

61. JenkinsonEM, RehmanAU, WalshT, et al. University of Washington Center for Mendelian Genomics. Perrault syndrome is caused by recessive mutations in CLPP, encoding a mitochondrial ATP-dependent chambered protease. Am J Hum Genet. 2013;92:605-13.

62. PierceSB, ChisholmKM, LynchED, et al. Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome. Proc Natl Acad Sci U S A. 2011;108:6543-8.

63. PeetersA, ShindeAB, DirkxR, et al. Mitochondria in peroxisome-deficient hepatocytes exhibit impaired respiration, depleted DNA, and PGC-1α independent proliferation. Biochim Biophys Acta. 2015;1853:285-98.

64. DirkxR, VanhorebeekI, MartensK, et al. Absence of peroxisomes in mouse hepatocytes causes mitochondrial and ER abnormalities. Hepatology. 2005;41:868-78.

65. OngG, LogueSE. Unfolding the interactions between endoplasmic reticulum stress and oxidative stress. Antioxidants. 2023;12:981.

66. ColpmanP, DasguptaA, ArcherSL. The role of mitochondrial dynamics and mitotic fission in regulating the cell cycle in cancer and pulmonary arterial hypertension: implications for dynamin-related protein 1 and mitofusin2 in hyperproliferative diseases. Cells. 2023;12:1897.

67. PiamsiriC, FefelovaN, PamarthiSH, et al. Potential roles of IP3 receptors and calcium in programmed cell death and implications in cardiovascular diseases. Biomolecules. 2024;14:1334.

68. ChenY, XiaS, ZhangL, et al. Mitochondria-associated endoplasmic reticulum membrane (MAM) is a promising signature to predict prognosis and therapies for hepatocellular carcinoma (HCC). J Clin Med. 2023;12:1830.

69. AlekosNS, KushwahaP, KimSP, et al. Mitochondrial β-oxidation of adipose-derived fatty acids by osteoblasts fuels parathyroid hormone-induced bone formation. JCI Insight. 2023:8.

70. Gómez-VirgilioL, Silva-LuceroMD, Flores-MorelosDS, et al. Autophagy: a key regulator of homeostasis and disease: an overview of molecular mechanisms and modulators. Cells. 2022;11:2262.

71. SteckTL, LangeY. Is reverse cholesterol transport regulated by active cholesterol? J Lipid Res. 2023;64:100385.

72. WandersRJ, WaterhamHR, FerdinandusseS. Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum. Front Cell Dev Biol. 2015;3:83.

73. PrasadS, SinghS, MengeS, et al. Gut redox and microbiome: charting the roadmap to T-cell regulation. Front Immunol. 2024;15:1387903.

74. SchraderM, KamoshitaM, IslingerM. Organelle interplay-peroxisome interactions in health and disease. J Inherit Metab Dis. 2020;43:71-89.

75. MieleckiJ, GawrońskiP, KarpińskiS. Retrograde signaling: understanding the communication between organelles. Int J Mol Sci. 2020;21:6173.

76. YapiciNB, GaoX, YanX, et al. Novel dual-organelle-targeting probe (RCPP) for simultaneous measurement of organellar acidity and alkalinity in living cells. ACS Omega. 2021;6:31447-56.

77. ChenFW, DaviesJP, CalvoR, et al. Activation of mitochondrial TRAP1 stimulates mitochondria-lysosome crosstalk and correction of lysosomal dysfunction. iScience. 2022;25:104941.

78. SpampanatoC, FeeneyE, LiL, et al. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol Med. 2013;5:691-706.

79. GattoF, RossiB, TaralloA, et al. AAV-mediated transcription factor EB (TFEB) gene delivery ameliorates muscle pathology and function in the murine model of Pompe disease. Sci Rep. 2017;7:15089.

80. ChaudhuriTK, PaulS. Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBS J. 2006;273:1331-49.

81. KaurS, SehrawatA, MastanaSS, et al. Targeting calcium homeostasis and impaired inter-organelle crosstalk as a potential therapeutic approach in Parkinson’s disease. Life Sci. 2023;330:121995.

82. MoratóL, RuizM, BoadaJ, et al. Activation of sirtuin 1 as therapy for the peroxisomal disease adrenoleukodystrophy. Cell Death Differ. 2015;22:1742-53.

83. EnglishK, BartonMC. HDAC6: A Key Link between mitochondria and development of peripheral neuropathy. Front Mol Neurosci. 2021;14:684714.

84. BaarineM, BeesonC, SinghA, SinghI. ABCD1 deletion-induced mitochondrial dysfunction is corrected by SAHA: implication for adrenoleukodystrophy. J Neurochem. 2015;133:380-96.

85. TerlukMR, TieuJ, SahasrabudheSA, et al. Nervonic acid attenuates accumulation of very long-chain fatty acids and is a potential therapy for adrenoleukodystrophy. Neurotherapeutics. 2022;19:1007-17.

86. AihaitiM, ShiH, LiuY, et al. Nervonic acid reduces the cognitive and neurological disturbances induced by combined doses of D-galactose/AlCl3 in mice. Food Sci Nutr. 2023;11:5989-98.

87. WangX, LiangT, MaoY, et al. Nervonic acid improves liver inflammation in a mouse model of Parkinson’s disease by inhibiting proinflammatory signaling pathways and regulating metabolic pathways. Phytomedicine. 2023;117:154911.

88. MantleD, HargreavesIP. Mitochondrial dysfunction and neurodegenerative disorders: role of nutritional supplementation. Int J Mol Sci. 2022;23:12603.

89. FourcadeS, GoicoecheaL, ParameswaranJ, et al. High-dose biotin restores redox balance, energy and lipid homeostasis, and axonal health in a model of adrenoleukodystrophy. Brain Pathol. 2020;30:945-63.

90. CasasnovasC, RuizM, SchlüterA, et al. Biomarker identification, safety, and efficacy of high-dose antioxidants for adrenomyeloneuropathy: a phase II pilot study. Neurotherapeutics. 2019;16:1167-82.

91. VanHaren KP, CunananK, AwaniA, et al. A phase 1 study of oral vitamin D3 in boys and young men with X-linked adrenoleukodystrophy. Neurol Genet. 2023;9:e200061.

92. Hernández-CamachoJD, BernierM, López-LluchG, NavasP. Coenzyme Q10 supplementation in aging and disease. Front Physiol. 2018;9:44.

93. McGarryA, McDermottM, KieburtzK, et al. Huntington study group 2CARE investigators and coordinators. A randomized, double-blind, placebo-controlled trial of coenzyme Q10 in huntington disease. Neurology. 2017;88:152-9.

94. KarthaRV, JoersJ, TerlukM, et al. Preliminary N-acetylcysteine results for LDN 6722 - Role of oxidative stress and inflammation in Gaucher disease type 1: potential use of antioxidant anti-inflammatory medications. Mol Genet Metab. 2019;126:S82.

95. MartakisK, ClaassenJ, Gascon-BayariJ, et al. Efficacy and safety of N-acetyl-L-leucine in children and adults with GM2 gangliosidoses. Neurology. 2023;100:e1072-83.

Organellar crosstalk as a potential therapeutic target for rare neurodegenerative diseases (2025)

References

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Kerri Lueilwitz

Last Updated:

Views: 6450

Rating: 4.7 / 5 (67 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Kerri Lueilwitz

Birthday: 1992-10-31

Address: Suite 878 3699 Chantelle Roads, Colebury, NC 68599

Phone: +6111989609516

Job: Chief Farming Manager

Hobby: Mycology, Stone skipping, Dowsing, Whittling, Taxidermy, Sand art, Roller skating

Introduction: My name is Kerri Lueilwitz, I am a courageous, gentle, quaint, thankful, outstanding, brave, vast person who loves writing and wants to share my knowledge and understanding with you.